Cubic Bridgeless Graphs and Braces

نویسندگان

  • Andrea Jiménez
  • Mihyun Kang
  • Martin Loebl
چکیده

There are many long-standing open problems on cubic bridgeless graphs, for instance, Jaeger’s directed cycle double cover conjecture. On the other hand, many structural properties of braces have been recently discovered. In this work, we bijectively map the cubic bridgeless graphs to braces which we call the hexagon graphs, and explore the structure of hexagon graphs. We show that hexagon graphs are braces that can be generated from the ladder on 8 vertices using two types of McCuaig’s augmentations. In addition, we present a reformulation of Jaeger’s directed cycle double cover conjecture in the class of hexagon graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering a cubic graph by 5 perfect matchings

Berge Conjecture states that every bridgeless cubic graph has 5 perfect matchings such that each edge is contained in at least one of them. In this paper, we show that Berge Conjecture holds for two classes of cubic graphs, cubic graphs with a circuit missing only one vertex and bridgeless cubic graphs with a 2-factor consisting of two circuits. The first part of this result implies that Berge ...

متن کامل

Short Cycle Covers of Cubic Graphs and Graphs with Minimum Degree Three

The Shortest Cycle Cover Conjecture of Alon and Tarsi asserts that the edges of every bridgeless graph with m edges can be covered by cycles of total length at most 7m/5 = 1.400m. We show that every cubic bridgeless graph has a cycle cover of total length at most 34m/21 ≈ 1.619m and every bridgeless graph with minimum degree three has a cycle cover of total length at most 44m/27 ≈ 1.630m.

متن کامل

RIMS - 1731 Covering Cuts in Bridgeless Cubic Graphs

In this paper we are interested in algorithms for finding 2-factors that cover certain prescribed edge-cuts in bridgeless cubic graphs. We present an algorithm for finding a minimum-weight 2-factor covering all the 3-edge cuts in weighted bridgeless cubic graphs, together with a polyhedral description of such 2-factors and that of perfect matchings intersecting all the 3-edge cuts in exactly on...

متن کامل

On Cubic Bridgeless Graphs Whose Edge-Set Cannot be Covered by Four Perfect Matchings

The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F of snarks (cyclically 4-edge-connected cubic graph...

متن کامل

A superlinear bound on the number of perfect matchings in cubic bridgeless graphs

Lovász and Plummer conjectured in the 1970’s that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve in 1979, and for planar graphs by Chudnovsky and Seymour in 2008, but in general only linear bounds are known. In this paper, we provide the first superlinear bound in the general case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016